Chromatic Losses in Natural Scenes with Viewing Distance

Raúl Luzón-González,1* Sérgio M. C. Nascimento,2 Osamu Masuda,2 Javier Romero1

1Optics Department, University of Granada, Campus Universitario Fuenteneuva, Fuenteneuva s/n, 18071 Granada, Spain
2Department of Physics, Gualtar Campus, University of Minho, 4710-057 Braga, Portugal

Received 26 October 2012; revised 19 January 2013; accepted 7 February 2013

Scattering and absorption in the atmosphere influence the colors of objects and can dramatically affect the way a landscape is perceived. We estimated, computationally, the chromatic losses in natural scenes as a function of the viewing distance for several atmospheric conditions. The study was based on models of real atmospheric scattering and absorption applied to hyperspectral data from natural images. It was found that exponential models could describe well the reduction in the number of perceived colors as a function of the viewing distance and the relationship between the coefficient reflecting the sum of the scattering and absorption effects and the viewing distance for a 50% reduction in colors. These results provide simple models to estimate the chromatic losses with viewing distance and can be used in applications of atmospheric optics concerned with visual simulations. © 2013 Wiley Periodicals, Inc. Col Res Appl, 00, 000–000, 2013; Published Online 00 Month 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/col.21812

Key words: color; visibility and imaging; atmospheric optics; atmospheric scattering

INTRODUCTION

When we observe the objects of a natural scene at a distance, their original colors, that is, those observed when seen very near, are modified by the scattering and absorption of light in the atmosphere.1,2 The light reflected by the objects suffers attenuation which can be spectrally selective, due to scattering and absorption phenomena along the trajectory from the objects to the observer. Also, scattered light in the atmosphere by particles out of this trajectory is added to the direct light. This is the component of the light received by the observer called airlight.3 As a consequence of these two phenomena, the objects appear whitish, with less-saturated colors, and in some occasions, with a tendency to bluish. These effects and others atmospheric optical phenomena have been explored by artists for centuries.4 When the size of the particles is less than 10% of the wavelength of the incident light, the scattering process can be explained according to the Rayleigh theory, which is strongly dependent on the wavelength. For particle sizes of about the same size or larger than 10% of the wavelength, such as those in water vapor, the scattering process is explained using the Mie theory, according to which the dependence between light scattering and wavelength decreases.2 These effects influence the final color of the objects seen by an observer or detected by a camera and both a change in the color distributions and a reduction in the number of colors are expected with increasing distance.

Hendley and Hetch4 made a first psychophysical evaluation of the color of the objects when viewed at a certain distance. They took notice of the lost in saturation and excitation purity for objects observed at a long distance. This decrease in the chromaticity of the objects with the distance in terms of the colorfulness has been also reported by Henry et al.5 Recently,6 we have computed the chromaticity coordinates of a set of opaque objects when observed from 0 km to ∞, according to a dichromatic model of scattering in the atmosphere.7 We have shown that the evolution of the chromaticity coordinates of the object along the chromaticity diagram goes from its original colors, when viewed at 0 distance, to the chromaticity of the horizon when the object is viewed at very long distance. This evolution means a lost in the...
saturation of the objects’ color and a certain change in the hue of the objects to blue which depends on the atmospheric conditions.

The purpose of this work was to estimate, computationally, the extent of the chromatic losses in natural scenes as a function of the viewing distance for several atmospheric conditions and to investigate the extent to which the losses can be described by simple quantitative models. Such models can be useful in applications of atmospheric optics such as in computer simulations of the outdoors scenes viewed through fog and in visual pilot training simulators.

We used a dichromatic model of the atmosphere that has been introduced to perform algorithms to recover original images from the degradation introduced by scattering and absorption. As the losses due to degradation of spatial resolution are trivial they were not considered here.

**METHOD**

Assuming the dichromatic atmospheric scattering model, the spectral radiance which exhibits an object with a spectral reflectance \( \rho(\lambda) \), when it is observed at a certain distance, has two components, one induced by direct light coming from the object toward the observer and the other by added light in the observer’s cone of vision due to atmospheric scattering or airlight. Thus, the object’s spectral radiance observed at a distance \( d \) can be expressed as

\[
L(\lambda, d) = L_0(\lambda) \exp(-\beta(\lambda)d) + L_\infty(\lambda)(1 - \exp(-\beta(\lambda)d))
\]

(1)

where \( L_0(\lambda) \) is the object’s spectral radiance at zero distance, \( \beta(\lambda) \) is the extinction coefficient in the atmosphere, and \( L_\infty(\lambda) \) is the spectral radiance of the airlight for an infinity distance, in practice the radiance of the horizon. The first term of Eq. (1) represents attenuated direct light whilst the second one represents the airlight. We assume a homogeneous atmosphere, that is, \( \beta(\lambda) \) is taken to be the same through the trajectory from the object to the observer and that the spectral illuminant is constant through the whole scene. In cloudy days Eq. (1) could be expressed as

\[
L(\lambda, d) = L_\infty(\lambda) \rho(\lambda) \exp(-\beta(\lambda)d) + L_\infty(\lambda)(1 - \exp(-\beta(\lambda)d))
\]

(2)

where \( L_\infty(\lambda) \) can be substituted by the spectral radiance of a perfect white object in the scene.

In the computations, we used scattering and absorption coefficients measured in five days covering a wide range of atmospheric conditions, from very clean atmosphere to hazy atmosphere, corresponding to a range of extinction coefficients between 50 to 150 Mm\(^{-1}\) in the spectral range from 400 to 720 nm.

The extinction coefficient, \( \beta(\lambda) \), is the sum of the scattering and the absorption coefficients. The scattering coefficient was measured at three wavelengths (450, 550, and 700 nm) and extrapolated to the range between (400 and 720 nm) using the expression:

\[
\beta(\lambda) \propto \frac{1}{\lambda^2}
\]

(3)

where the parameter \( u \) is related with the amount and type of aerosols present in the atmosphere. More details about the characteristics of the atmospheric conditions can be found in the work Romero et al. In the visible range, the absorption coefficient was taken to be constant and measured at 670 nm.

The effects of the different extinction coefficients and distances were simulated using hyperspectral data from 17 rural scenes of non-cultivated areas, containing rocks, trees, flowers, grass, foliage, and earth, and 21 urban environments containing buildings. The hyperspectral data were obtained with a hyperspectral imaging system consisting of digital camera with a spatial resolution of 1344 \( \times \) 1024 pixels (Hamamatsu, model C4742-95-12ER, Hamamatsu Photonics K. K., Japan), and a fast tunable liquid-crystal filter (Varispec, model VS-VIS2–10-HC-35-SQ, Cambridge Research & Instrumentation, MA). The tunable filter was mounted in front of a lens with a 75 mm focal length. The viewing angle of the system was about 6° and its spatial resolution was comparable to that of the human eye. The images were acquired in the range 400–720 nm in 10 nm steps. Hyperspectral data were calibrated using the spectrum of the light reflected from a gray surface present in the scene measure with a telespectroradimeter (SpectraColourimeter, PR-650, PhotoResearch, Chatsworth, CA) just after image acquisition. The data necessary for the computations carried out here were the spectral reflectance and the spectral radiance from a perfect white object of the scene. The spectrum from the gray reference surface was used to obtain the spectral radiance from a perfect white object and to normalize for the illumination of the scene and therefore to obtain an estimate of the spectral reflectance of each pixel (see the work of Foster and Amano for details about the imaging technique and Linhares et al. for pictures of the scenes). For each pixel on an image, the corresponding spectral radiance was estimated according to Eq. (2), considering a distance \( d \) and an extinction coefficient \( \beta \). The illuminant used for the simulations was the one recovered from the scene. As a white reference, we have employed a perfect white patch (\( \rho(\lambda) = 1 \)) at every distance. We have employed the CIE 1931 Standard Colometric Observer. The CIELAB color coordinates were computed and in this way we obtain the color gamut of the scene in such conditions. The number of discernible colors was estimated by segmenting the CIELAB color volume into unitary cubes and by counting the number of non-empty cubes, a methodology that produces a reasonable estimate. Next, we studied the decrease in the number of discernible colors of the scenes with the distance of observation, at certain atmospheric conditions.

**RESULTS**

Figure 1 shows the results of the computations for two scenes, one for an urban scene and the other for a rural scene with two different beta parameters. The first and
third rows corresponds to the RGB representation obtained from the hyperspectral images (electronic version), used here for representational purposes. The first column correspond to the original scene (observation distance at 0 km), the second one is for an observation distance of 1 km, and the third one for 10 km. The simulations were run keeping the scene geometry unchanged but increasing the simulated distance to the observation point. The second and fourth rows correspond to the CIELAB coordinates for each scene at three distances.

The airlight component adds environmental light in the observer’s field of view and introduces a desaturation in the color of the objects as the distance of observation increases. Then, the \((a^*, b^*)\) color coordinate gamut are compacted yielding to a chromatic reduction when the distance increases. The lightness component \((L^*\) coordinate) drifts to the limiting value of 100 due to the effect of the airlight term. As a consequence of the compression in the chromatic components \((a^*, b^*\) coordinates) and the increase in lightness component \((L^*\) coordinate), objects appears less saturated and whitish. In the limit, for an infinite distance, the color information of the objects is lost, as predicted by Eq. (2), and only environmental scattering light will arrive at the observer. Thus, the visibility of the objects in the scene shrinks increasingly with the scene distance. This reduction in the color gamut of the scene’s objects was found for all scenes and for all atmospheric conditions.

We have evaluated numerically this reduction in the color gamut of the scenes by the estimation of the

![Figure 1](image-url). First and third row corresponds to a RGB sample images (electronic version) obtained from the hyperspectral data at three distances (0 km, 1 km, and 10 km). The first row corresponds to an urban scene in a clear day \((\beta = 60.3 \text{ Mm}^{-1})\), and the third row corresponds to a rural scene in a hazy day \((\beta = 125.2 \text{ Mm}^{-1})\). The second and fourth rows corresponds to the CIELAB coordinates for each scene at three distances.
number of discernible colors in each scene and atmospheric conditions, Fig. 2. The results are normalized to the value for 0 km of observation distance. We found that the number of discernible colors for all images in the database and for all atmospheric conditions considered is reduced exponentially as the distance increases. Figure 2 shows the reduction in the number of discernible colors for five different atmospheric conditions for all scenes in the database. For higher extinction coefficients (i.e., turbid atmosphere), the number of discernible colors is lower than the obtained for lower extinction coefficients (i.e., clean atmosphere). The fit of a double exponential to the data is shown in Fig. 2.

The term due to attenuation in the Eq. (2), first addend, is plotted separately in Fig. 3. The attenuation component introduces a smooth reduction in the number of discernible colors. This attenuation term was adjusted to a single exponential fit with a high goodness of fit as it is shown in the plot. When Figs. 2 and 3 are compared it can be deduced that the airlight term influences in a higher degree the reduction in the number of discernible colors, especially for short distances. Table I shows the decay parameters obtained in the fits. The small one is related to the attenuation component and the larger one to the airlight component. The fast decrease of the number of colors from 0 to 4 km is mainly due to the airlight term in Eq. (2). For instance, at 2 km the total number of discernible colors is approximately between 20 and 43% of the original gamut, which is a reduction between 80 and 57% approximately, depending on the atmospheric conditions. The reduction due to attenuation is around 20% for the higher extinction coefficient. The reduction due to the attenuation term falls between 25 and 70% at 10 km. We can conclude that the principal factor responsible for the reduction in the color gamut of the scenes with distance is the airlight. Nevertheless, in some cases the attenuation term can be responsible for the total reduction in the number of colors at long distances at higher extinctions coefficients.

Figure 4 represents the extinction coefficient as a function of the distance for which the number of discernible colors falls by half. The red line (electronic version) represents an exponential fit with a goodness of fit value of 0.9917. The quality of this fit suggests that an exponential model can be used to estimate the reduction in the number of discernible colors in a specific scene as a function of the atmospheric conditions, independent of the color gamut of the scene.

The study was generalized to the optimal colours which are object colors having the maximum saturation at a given lightness. Figure 5 represents a comparison between the volume enclosed by the optimal colors and the color volumes averaged for all the scenes and for all atmospheric conditions considered. The computations of the volume of the solid were carried out as described in the work by Masuda and Nascimento. The reduction in theoretical volume follows a similar behavior to the one obtained with the data from the natural scenes, but

<table>
<thead>
<tr>
<th>Extinction coefficient (Mm⁻¹)</th>
<th>t₁ (10⁻³)</th>
<th>t₂ (10⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β₁ = 60.3</td>
<td>0.4</td>
<td>3.2</td>
</tr>
<tr>
<td>β₂ = 108.5</td>
<td>0.3</td>
<td>2.2</td>
</tr>
<tr>
<td>β₃ = 150.7</td>
<td>0.2</td>
<td>1.7</td>
</tr>
<tr>
<td>β₄ = 50.9</td>
<td>0.5</td>
<td>3.5</td>
</tr>
<tr>
<td>β₅ = 125.2</td>
<td>0.3</td>
<td>2.0</td>
</tr>
</tbody>
</table>

The fit shows that there are two components involved in the reduction of discernible colors as distance increase, one slower (related with the attenuation component, t₁) and one faster (related with the airlight component, t₂).
with faster decay. This may be explained by the fact that natural colors occupy only a fraction of the theoretical limits defined by optimal colours\textsuperscript{17} and by the non-uniformities of the CIELAB color space near the limits.\textsuperscript{23,24}

**CONCLUSION**

In this work, we used CIELAB color space and assumed that the metric is such that Euclidian distances between colors are at 1:1 relationship to perceptual differences. However, the nonuniformities of this color space are well documented, especially close to the locus of spectral colours.\textsuperscript{23,24} On the other hand, the influence of the spatial structure of the images on color perception and discrimination was not considered. As the estimates obtained here are relative rather than absolute these effects are minimized. In addition, the colors of the natural scenes, both of urban and rural environments, have a limited gamut and theirs colors rarely are close to the chromatic extremes where the CIELAB space is less uniform.\textsuperscript{17}

We found that the reduction in the number of discernible colors with the distance of observation can be well described by an exponential decay with two components. A fast component determined by the airlight effect and a slow component determined by the attenuation effect. Also, we have shown that an exponential model describes the relationship between the extinction coefficient and the distance for which the reduction in the number of colors is halved.

The results of this work provide a simple way to estimate the color gamut reduction with distance in real scenes for different atmospheric conditions and can be useful as a first step in application of atmospheric optics such as color simulation of surfaces viewed through mist and in daylight pilot training simulators. These results must include some model in order to be useful to simulate the human perception through mist or haze. There are several works that treat the study of transparency perception\textsuperscript{5,8} but a whole quantitative model needs to be developed that could predict quantitatively the effects of semi-transparent layers and the color gamut reduction as a function of the distance and the atmospheric weather conditions.

**ACKNOWLEDGMENTS**

Authors thank professors Juan Luis Nieves and Javier Hernández Andrés at the University of Granada for their helpful comments.


**FIG. 4.** Extinction coefficient as a function of the distance where the number of discernible colors falls by half. The red line (electronic version) correspond to an exponential fit of the form $a\exp(-x/t)$, with a goodness of fit of 0.9917, where $a$ and $t$ are the parameters.

**FIG. 5.** Comparison between the speed reduction in the relative volumes of the objects colors in the scene (black round points) and the corresponding optimal colors (red square points, electronic version) as a function of the distance. The lines corresponds to an exponential fit of the form $y_0 + a_1\exp(-x/t_1) + a_2\exp(-x/t_2)$, with a goodness of fit showed in the plot, where $y_0$, $a_1$, $a_2$, $t_1$, and $t_2$ are the parameters.